

A Feasibility Study on the Position Hypothesis Based RTK with the Aids of 3D Building Models

Hoi-Fung Ng (Presenter), Li-Ta Hsu

Interdisciplinary Division of Aeronautical and Aviation Engineering, The Hong Kong Polytechnic University, Hong Kong

Precise GNSS Positioning, ION ITM 2021, 25-28 Jan 2021, Virtual

Centimetre-Level Positioning

New era!!

Interdisciplinary Division of Aeronautical and Aviation Engineering 航空工程跨領域學部

Urban GNSS Positioning

Line-of-sight (LOS) pseudorange: $\rho^{i} = (t_{rx} - t_{tx})c$

Reflected signal:

$$\rho_{refl}^{i} = \left(t_{rx} - t_{tx} + t_{refl}\right)c$$

NLOS reception: LOS signal is blocked only receiving reflected signal

Multipath: receiving both LOS signal and reflected signal

Widely available 3D building model now!

Popular 3D Mapping Aided (3DMA) GNSS

Shadow matching (Satellite Visibility)

GNSS Ray-tracing (Range and C/N₀)

Rethinking GPS: Engineering Next-Gen Location at Uber

Ranging 3DMA GNSS Performance

RMS error (m)	NMEA	WLS	SDM	LBR	SKY	SDM + LBR	SDM + SKY	SDM + LBR + SKY
2D	6.64	18.33	5.68	5.65	6.31	4.89	5.21	5.27
Along street	3.39	14.57	4.51	5.01	5.75	4.67	4.93	4.90
Across street	5.70	11.12	3.45	2.61	2.60	1.45	1.69	1.95

[4] H.-F. Ng, G. Zhang, L.-T. Hsu, "GNSS NLOS Pseudorange Correction based on Skymask for Smartphone Applications," *Proceedings of the 32nd International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2019)*, Miami, Florida, September 2019, pp. 109-119. doi: https://doi.org/10.33012/2019.17121

Conventional RTK GNSS with LAMBDA

[5] P. J. G. Teunissen, "Least-Squares Estimation of the Integer GPS Ambiguities," Invited lecture, section IV theory and methodology, IAG general meeting, Mindors Shaping the Future : 啟迪思维·

THE HONG KONG

 $\hat{a} \longrightarrow \check{a} \in \mathbb{Z} \quad \Longrightarrow \quad \check{p} = \hat{p} + \check{b}$

[6] P. J. G. Teunissen, "Least-Squares Estimation of the Integer GPS Ambiguities," *Invited lecture, section IV theory and methodology, IAG general meeting,* 1993.

[7] P. Teunissen, "On the computation of the best integer equivariant estimator," 2005.

3DMA GNSS RTK

Experiment Setup Vortel FlexPation (geodetic-grade) Active antenna Splitter Splitter L-blox F9P (commercial-grade)							
			Equipmer	nt setup			
Algorithm	Initial state estimation	AR method	Applying 3DMA	Applying continuous LOS (C-LOS)	Elevation cutoff angle (degree)	C/N _o cutoff (dBHz)	
ILS	Least square	LAMBDA	No	No	15		
BIE	Least square	BIE	No	No	15		
BIE@EL35	Least square	BIE	No	No	35		
3DMA BIE RTK	Accurate float position	BIE	Yes	Yes	15	15	
3DMA BIE@GT	Ground truth	BIE	Yes	Yes	15		

Experiment locations

Positioning Results

Experiment	Unit: cm	ILS	BIE	BIE@EL35	3DMA BIE RTK	3DMA BIE@GT
1	RMS	1.15	1.15	1.50	1.15	1.15
	Mean	1.02	1.02	1.36	1.03	1.03
l Deletively energly	STD	0.53	0.53	0.63	0.53	0.53
Relatively opensky	Max	2.33	2.33	2.77	2.33	2.33
	Min	0.03	0.03	0.02	0.03	0.03
	RMS	391.36	382.83	306.86	7.47	7.47
2	Mean	221.68	214.33	135.43	1.91	1.91
2 Suburban	STD	322.70	317.39	275.51	7.22	7.22
Suburban	Max	1254.11	1157.70	885.38	203.68	203.68
	Min	0.16	0.22	0.14	0.03	0.03
	RMS	0.90	0.90	0.95	0.93	0.95
2	Mean	0.78	0.78	0.86	0.82	0.84
J Urban	STD	0.44	0.44	0.41	0.45	0.45
Urban	Max	2.09	2.09	1.97	2.09	2.09
	Min	0.01	0.01	0.02	0.01	0.01
	RMS	257.25	241.76	30.11	7.95	8.11
4	Mean	112.74	126.78	10.31	1.76	2.16
Urban, unevenly	STD	231.36	205.96	28.30	7.75	7.82
distributed skymask	Max	846.42	593.57	195.78	124.25	124.25
	Min	0.08	0.08	0.06	0.05	0.01
	RMS	207.98	216.85	62.02	1.93	1.93
5	Mean	72.32	74.46	23.43	1.37	1.37
Urban, unevenly	STD	195.09	203.75	57.45	1.37	1.37
distributed skymask	Max	1228.31	1201.26	295.91	28.00	28.00
	Min	0.03	0.03	0.03	0.03	0.03

ine Future · 啟迪恣離 · 风矾木术 1 /

Experiment 2

Note: the graph is zoomed in and not all solution are shown

Unit: cm	ILS	BIE	BIE@EL35	3DMA BIE RTK	3DMA BIE@GT
RMS	391.36	382.83	306.86	7.47	7.47
Mean	221.68	214.33	135.43	1.91	1.91
STD	322.70	317.39	275.51	7.22	7.22
Max	1254.11	1157.70	885.38	203.68	203.68
Min	0.16	0.22	0.14	0.03	0.03

Experiment 2

Unit: cm	ILS	BIE	BIE@EL35	3DMA BIE RTK	3DMA BIE@GT
RMS	0.90	0.90	0.95	0.93	0.95
Mean	0.78	0.78	0.86	0.82	0.84
STD	0.44	0.44	0.41	0.45	0.45
Max	2.09	2.09	1.97	2.09	2.09
Min	0.01	0.01	0.02	0.01	0.01

THE HONG KONG POLYTECHNIC UNIVERSITY 香港理工大學

Note: the graph is zoomed in and not all solution are shown

				== =		
	Unit: cm	ILS	BIE	BIE@EL35	3DMA BIE RTK	3DMA BIE@GT
	RMS	257.25	241.76	30.11	7.95	8.11
	Mean	112.74	126.78	10.31	1.76	2.16
Γ	STD	231.36	205.96	28.30	7.75	7.82
	Max	846.42	593.57	195.78	124.25	124.25
	Min	0.08	0.08	0.06	0.05	0.01

THE HONG KONG POLYTECHNIC UNIVERSITY 香港理工大學

Experiment 5

Note: the graph is zoomed in and not all solution are shown

BIE@EL35 **3DMA BIE RTK 3DMA BIE@GT** Unit: cm ILS BIE 207.98 216.85 62.02 1.93 1.93 RMS 72.32 74.46 23.43 1.37 1.37 Mean 203.75 1.37 1.37 STD 195.09 57.45 1228.31 1201.26 295.91 28.00 28.00 Max Min 0.03 0.03 0.03 0.03 0.03

Conclusions and Future Work

- Healthy satellite is important for ambiguity resolution and GNSS RTK in urban environment
- Exclusion in a dynamic way (by Skymask) is better than that of with a fixed elevation angle threshold
- 10cm accuracy in urban with 3DMA GNSS RTK
- Limitations:
 - Candidates must cover the ground truth
 - Intensive computation load
- Gradient-decent methods is going to adopt

Thank you for your attention

Questions and comments are welcome

NG, Hoi-Fung 吳凱峯

If you have any questions or inquires, please feel free to contact me

ivannhf.ng@connect.polyu.hk

+852 6805-2477